
International Journal of Mass Spectrometry 240 (2005) 107–120

Secondary ion mass spectrometry measurements of isotopic ratios:
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Abstract

In secondary ion mass spectrometry measurement systems, the count rate of isotopes may vary in time as a particle is consumed during the
analysis. Since isotopes are measured sequentially, this drift can introduce systematic error into the estimate of the ratio of any two isotopes.
We correct the measurements for drift by aligning the time series of isotopic pairs using a linear interpolation approach. We estimate an
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sotopic ratio for each of two cases. In one case the time series of the more abundant isotope is aligned with respect to the time
ess abundant isotope. In the second case the less abundant isotope is aligned with respect to the more abundant one. We averag
stimates to get a drift-corrected estimate. We present an analytical formula for the random uncertainty of the isotopic ratio that a
orrelation introduced by interpolation. We also present an approximate hypothesis test procedure to detect and quantify possib
ariation of the measured isotopic ratio during a single analysis. In a Monte Carlo study, the performance of the methods is quan
n analysis of simulated data with complexity similar to that of real data generated by a secondary ion mass spectrometer.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Secondary ion mass spectrometry (SIMS) is a specialized
nalytical method that can be used to perform localized iso-

opic ratio measurements on a micrometer scale. Such mea-
urements have broad applicability in areas of geology, as-
ronomy, and biology[1]. A specific application area of recent
nterest is nuclear forensics, whereby SIMS has been applied
o the search for evidence of uranium enrichment activities
hrough the measurements of the relative abundances of U-
35 and U-238 in micrometer-sized particles[2–6]. In SIMS
easurement systems, the count rate of isotopes may vary

n time as a particle is consumed during the analysis. Since

∗ Corresponding author. Tel.: +1 303 497 3895; fax: +1 303 497 3012.
1 Contributions of NIST staff to this work are not subject to copyright

aws in the US.
E-mail addresses:kevin.coakley@nist.gov (K.J. Coakley),

avid.simons@nist.gov (D.S. Simons), andrew.leifer@nist.gov
A.M. Leifer).

only one isotope at a time is measured in conventiona
counting systems, this drift can introduce systematic e
into the estimate of the ratio of any two isotopes. Hence,
recting the SIMS instrument for drift is critical to the accur
determination of isotopic ratios and their associated ran
uncertainties. Although chemical elements often have m
than two isotopes, we consider their measurements her
pairwise fashion, with the more abundant isotope of the
designated as the major isotope and the less abundant
the minor isotope.

In each of two interpolation schemes, we align one iso
time series with respect to the other. In the major–mino
terpolation scheme, the minor time series is fixed and
major time series is interpolated. In the minor–major
terpolation scheme, the major time series is fixed and
minor time series is interpolated. In simulation studies
show that the average of the estimates obtained from
interpolation schemes is superior to the estimate comp
either from the unaligned data or from a single inter

387-3806/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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lation scheme for the case where the count rate varies in
time.

We present a formula for the approximate standard devi-
ation of the isotopic ratio estimated from the aligned data.
Our formula accounts for the effect of interpolation on the
variability of the data. We also present an approximate hy-
pothesis test procedure to detect and quantify possible sys-
tematic temporal variation in the isotopic ratio time series
data. Our new test is related to tests for spatial variation of
isotopic ratio estimates computed from spatial data[7]. How-
ever, these methods were not originally designed for the case
where SIMS data are interpolated in time.

In this work, we neglect other systematic errors such as
dead time effects[8,9], mass bias effects and background
contamination. Accounting for these effects in our estimation
procedure and uncertainty analysis is straightforward but a
subject beyond the scope of this work.

The concept of correcting mass spectrometric time series
data for the effects of drift by a linear interpolation method
is certainly not new. The novel contributions of this work in-
clude: (1) a rigorous statistical treatment of the uncertainty of
the estimated isotopic ratio computed from the drift-corrected
time series; (2) a method to reduce the systematic error of the
isotopic ratio estimate computed from the interpolated data
by averaging estimates computed from two different interpo-
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surements) of Poisson processes with expected valuesrλ and
λ. Since the probability thatN = 0 is nonzero, the expected
value ofr̂ is infinite. In order to construct an estimate with fi-
nite bias, we restrict attention to realizations of the data where
the observed denominator term is positive. In effect, this
means that the experimenter would ignore data whereN = 0.
For most experiments,λ is large andP(N = 0) = exp(−λ) is
negligible. Thus, this restriction has no practical consequence
on data acquisition in typical experiments of interest.

The conditional probability of observing a particular pos-
itive realization ofN is

P(N|N > 0) = 1

1 − exp(−λ)

exp(−λ)λN

N!
. (1)

One can show that the expected value of the inverse of the
positive realizations ofN is

E

(
1

N
|N > 0

)
≈ 1

λ

(
1 + 1

λ

)
. (2)

Suppose thatM is a realization of a Poisson process with
expected valuerλ. If M andN are independent, it follows
that
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ation schemes; and (3) development of statistical met
o detect and quantify either systematic error or additi
andom variability (beyond counting statistics variability
he isotopic ratio time series.

In Section2, we comment on some mathematical diffic
ies associated with the expected value of the ratio of Po
andom variables. In Section3, we present a measurem
odel for the data. In Section4, we develop our alignme
ethods and an approximate formula for the random u

ainty of the isotopic ratio computed from the drift-correc
ata. In Section5, we develop a hypothesis test approac
etect possible temporal variation in the isotopic ratio
article. In Sections6 and 7, we quantify the performanc
f our methods for simulated data with complexity typ
f experimental data collected at NIST and remark on

imitations of our methods. In Section8, we briefly discus
suggested method to quantify possible systematic err

he data for cases where we know that the isotopic ra
table in time. We also discuss a method to quantify th
ect of unaccounted extra random variability on our estim
f the isotopic ratio.

. Preliminary remarks

In this work, we present a method to reduce the system
rror, i.e., bias, of isotopic ratio estimates due to system

emporal variation of the signals. The bias of a paramete
imate is the difference between its expected value an
rue value of the parameter. Consider the estimate ˆr = M/N,
hereM andN are independent realizations (ion count m
≈ r

(
1 + 1

λ

)
. (3)

For more discussion about the expected values of rati
andom variables, see[10, p. 180].

Our analysis demonstrates that the expected value o
easured isotopic ratio computed for data in the restr

ample space is finite. Moreover, the fractional bias o
stimate ˆr = M/N is approximately 1/E(N).

. Measurement model

We assume that minor and major isotope counts
bserved in an alternating scheme. Thekth, where k =
, . . . , K, minor isotope measurement is made over a co

ng time interval centered attm(k). Thekth major isotope i
easured over a counting time interval centered attn(k). The
idths of the minor and major intervals (bins) are res

ively �m and�n. We denote the measured major and m
sotope counts for thekth cycle of the experiment asn(k) and

(k). We assume that the observed quantitiesm(k) andn(k)
re realizations of Poisson processes with expected va

(m(k)) =
∫ tm(k)+�m/2

tm(k)−�m/2
λm(t) dt (4)

nd

(n(k)) =
∫ tn(k)+�n/2

tn(k)−�n/2
λn(t) dt, (5)
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where the count ratesλm(t) andλn(t) may vary in time. In
this work, we assume thatm(k) and n(k) are independent
random variables. Thus, the fluctuationsm(k) − E(m(k)) and
n(k) − E(n(k)) are uncorrelated even thoughE(m(k)) and
E(n(k)) are dependent.

For stable count rates, a natural estimate for the isotopic
ratio r is

r̂ = �n

�m

∑K
k=1 m(k)∑K
k=1 n(k)

. (6)

For the case where the count rates vary in time, the above
estimate may be biased because the measurements of the
corresponding minor and major isotope counts do not occur
at the same time.

4. Alignment

In one linear interpolation scheme, we predict the number
of major counts that would have been observed hadtn(k)
equaledtm(k). That is, we align the major isotope time series
with respect to the minor isotope time series. In the other
linear interpolation scheme, we predict the number of minor
counts that would have been observed hadtm(k) equaledtn(k).
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compensate for systematic error due to a periodically vary-
ing count rate (with a large amplitude) when the frequency
of the sinusoidal variation equals the data sampling rate.

4.1. Alignment: major to minor

Without loss of generality, we assume that the minor iso-
tope is measured first. We define the predicted number of
major counts corresponding to a time with the same center as
thekth minor isotope measurement as ˆn(k). After alignment,
we get a series of isotope count pairs (m(k), n̂(k)), where
k = 2, . . . , K. A linear interpolation approach yields

n̂(k) = αn(k)n(k − 1) + βn(k)n(k) (7)

where

αn(k) = tn(k) − tm(k)

tn(k) − tn(k − 1)
(8)

and

βn(k) = tm(k) − tn(k − 1)

tn(k) − tn(k − 1)
. (9)

For this interpolation scheme, the estimated value of the
isotopic ratio is

r̂
M �n
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ecause the actual count rate may not be exactly a l
unction of time, each estimate is biased. In general, fo
ases studied here, the two interpolation schemes pro
stimates with biases of comparable magnitude but diffe
ign. Thus, we average the two estimates to reduce bia
ill demonstrate that the isotopic ratio estimates produ
y each of the interpolation schemes have similar stan
eviations. Because the two estimates are highly corre

he standard deviation of the average of the estimates is n
he same as the standard deviation of either estimate.

In either linear interpolation scheme, we predict the
erved number of counts for an interval where no data
aken by taking a weighted average of the observed co
rom the two nearest intervals where data was taken. Fo
pecial case where the count rate varies linearly with t
he systematic error associated with either linear interpol
cheme vanishes because the expected value of the pre
umber of counts for any interval equals the expected v
f what would have been observed for that interval had
een taken. In general, the accuracy of either interpol
cheme depends on the validity of the assumption tha
ount rate can be approximated as a linear function of tim
he immediate neighborhood that includes the interval o
erest and the two nearest intervals. The validity of our me
oes not depend on whether the count rate is monoton

ncreasing or decreasing in any time interval of interest.
he general case where the count rate is a nonlinear fun
f time but approximately linear over contiguous time in
als where data is taken, we expect our method to work
ne can construct cases where our method is not exp

o work well. For instance, our averaging method will
d

=
N̂ �m

, (10)

here

=
K∑

k=2

m(k), (11)

nd

ˆ =
K∑

k=2

n̂(k). (12)

Based on a propagation-of-error method (Appendix A)
imilar to the one described in[7], we estimate the varian
f r̂ as

ÂR(r̂) =
(

�n

�mN̂

)2 [
V̂AR(M)(1 + N̂−2V̂AR(N̂))

+
(

�mr̂

�n

)2

V̂AR(N̂)

]
. (13)

Based on the assumption that the observed counts are P
andom variables, we approximate the variance ofM as

ÂR(M) =
K∑

k=2

m(k). (14)

rom Eqs.(7) and (12), we have that

ˆ =
K∑

k=1

γn(k)n(k), (15)
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whereγn(1) = αn(2), γn(K) = βn(K), andγn(k) = αn(k +
1) + βn(k) for 1 < k < K. If x andy are independent ran-
dom variables anda andb are constants, VAR(ax + by) =
a2VAR(x) + b2VAR(y). Hence, we approximate the variance
of N̂ as

V̂AR(N̂) =
K∑

k=1

γ2
n (k)n(k). (16)

4.2. Alignment: minor to major

The theoretical development for the alternative alignment
scheme, where we align the minor isotope time series with
respect to the major isotope time series, is similar to the above.
For the minor–major interpolation scheme,

r̂ = M̂

N

�n

�m

(17)

and

V̂AR(r̂) =
(

�n

�mN

)2 [
V̂AR(M̂)(1 + N−2V̂AR(N))

+
(

�mr̂

�n

)2

V̂AR(N)

]
, (18)
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where γm(1) = αm(1), γm(K) = βm(K − 1), and γm(k) =
αm(k) + βm(k − 1) for 1 < k < K.

If either M or M̂ is 0, Eq. (13) or (18) predicts that
V̂AR(r̂) =0. Thus, for low count situations where the ob-
served value ofM or M̂ is 0, our methods are not appropriate.
The study of such 0 count cases is a topic for further study. In
all cases studied here, the estimated isotopic ratio is nonzero.

5. Hypothesis test for temporal variation

We develop a hypothesis test to detect possible system-
atic temporal variation of isotopic ratio measurements for
the major–minor interpolation scheme. The null hypothesis
is that the isotopic ratio is constant in time and that the ran-
dom variation of the data is due to Poisson counting statistics.
As a caveat, it is possible that our test could detect system-
atic variation in the data unrelated to the temporal variation
of the true isotopic ratio. Possible sources of such extra vari-
ation include imperfections of interpolation algorithms and
random detector calibration errors or other instrumental in-
stabilities that are not accounted for here. For cases where
background signals are significant, systematic errors due to
imperfect methods for background correction could also be
difficult to distinguish from temporal variation of the true iso-
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where

=
K−1∑
k=1

n(k) (19)

nd

ˆ =
K−1∑
k=1

m̂(k). (20)

hekth interpolated minor count value is

ˆ (k) = αm(k)m(k) + βm(k)m(k + 1), (21)

here

m(k) = tm(k + 1) − tn(k)

tm(k + 1) − tm(k)
(22)

nd

m(k) = tn(k) − tm(k)

tm(k + 1) − tm(k)
. (23)

e approximate the variances ofN andM̂ as

ÂR(N) =
K−1∑
k=1

n(k) (24)

nd

ÂR(M̂) =
K∑

k=1

γ2
m(k)m(k), (25)
opic ratio. In[7], we quantified the systematic spatial va
ion of the isotopic ratio for cases where the evidence, b
n the test statistic value, for such variation was stron
ection8, we offer guidance on how to modify the appro

n [7] for the problem studied here.
Our goodness-of-fit statistic,χ2

r , measures the differen
etween the ratio estimated for each cycle and the rati

imated from all pooled data. The basic idea is to divide
ifference by an approximation for the standard deviatio

his difference. The sum of the squared standardized res
s

2
r =

K∑
k=2

(r̂(k) − r̂)2

V̂AR(r̂(k))
, (26)

here the estimated ratio for each cycle is

ˆ(k) = m(k)

n̂(k)

�n

�m

, (27)

nd the estimate from the pooled data ˆr is computed usin
q. (10). Using the same methodology as in the prev
ection, we approximate the variance of ˆr(k) using a standar
ropagation-of-error approach as

V̂AR(r̂(k)) =
(

�n

�mn̂(k)

)2 [
V̂AR(m(k))

× (1 + n̂−2(k)V̂AR(n̂(k))) +
(

�mr̂

�n

)2

V̂AR(n̂(k))

]
.

(28)
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Based on Eq.(7), we approximate the variance of thekth
interpolated major count and thekth observed minor count
as

V̂AR(n̂(k)) = α2
n(k)n(k − 1) + β2

n(k)n(k), (29)

where

V̂AR(m(k)) = �mr̂

�n

n̂(k). (30)

Assuming that theK − 1 terms ˆr(k) = m(k)/n̂(k) are inde-
pendent Gaussian (normal) random variables, and the Eq.
(28) variance approximation is exact, the test statisticχ2

r

would have a chi-squared distribution withK − 2 degrees
of freedom. The sum ofM independent Gaussian random
variables (each with expected value 0) has a chi-squared dis-
tribution withM degrees of freedom. Our test statistic is as-
sumed to haveK − 2 degrees of freedom rather thanK − 1
degrees of freedom because we use an estimate ofr in the nu-
merator terms in Eq.(26). In general, the degrees of freedom
of goodness-of-fit statistics computed fromK independent
observations where the model hasj adjustable parameters is
K − j.

If the null hypothesis is true, then all random variability in
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Fig. 1. Estimated rejection rate of hypothesis tests for case wherer = 0.01
and the count rates are stable in time. The number of simulated pairs of
unaligned minor–major counts isK = 20.

6. Example: real data

We analyze 50 cycles of SIMS measurements of boron
isotopes B10 and B11 from a minute quantity of boron salt
(Fig. 2). The isotopic ratio B10/B11 estimate from the raw
data pairs, uncorrected for instrumental mass bias, is 0.27594,
whereas the two interpolation schemes yield estimates of
0.27202± 0.00028 (major interpolated) 0.27216± 0.00028
(minor interpolated). In this work, ˆx ± σ corresponds to an
approximate 68% confidence interval, i.e., a±1-sigma inter-
val. The average of these two estimates, 0.27209, is plotted
as a reference line inFig. 3. The test statisticχ2

r andp-value
for the hypothesis test for temporal variation are 47.238 and
0.504. Since thep-value is large compared to 0.05, we con-
clude that Poisson counting statistical variability explains the
observed cycle to cycle variability in the data.

In Appendix B, we list software codes that implement our
methods. The codes are written in the language R[11] which
is a public domain software package that can be downloaded.
In this work and in the codes, we assume that the minor iso-
tope is measured first. If the major isotope is measured first,
the codes can be run without modification if each isotopic
time series is reversed. That is, transform the time midpoints
from t1, t2, . . . , tK into −tK, −tK−1, . . . , −t1 and the count
time series fromn1, n2, . . . , nK into nK, nK−1, . . . , n1.
he data is due to Poisson counting statistics. Suppose th
ompute a particular value ofχ2

r from a data set. Thep-value
or a given data set is

∫∞
χ2

r
f (x) dx, wheref (x) is the proba

ility density function (pdf) of the test statistic when the n
ypothesis is true. In our work, we assume thatf (x) is the pdf

or a chi-squared distribution withK − 2 degrees of freedom
very smallp-value, say less than 0.05, is strong evide

or rejecting the null hypothesis. In some cases, resear
eject the null hypothesis only if the test statistic excee
elected critical value. To construct a test with nominal
, we chose a critical value such that the null hypothesis

ected with probabilityκ. For our case, the critical level for
est with nominal size (false detection rate) 0.05 corresp
o the 0.95 quantile, i.e., 95th percentile, of a chi-squ
istribution withK − 2 degrees of freedom.

To illustrate our approach, we estimate false detec
ates for the case where the major and minor count
ntervals are both 1 s, and both the major and minor c
ates are 1000 Hz. Thus,r = 1. The midpoints of the cou
ime intervals are such thatα(k) = β(k) = 0.5 (Eqs. (8)
nd (9)) for all k. We simulateK = 20 pairs of unaligne
m(k), n(k)). For tests with nominal size 0.05 and 0.1,
orresponding approximate 68% confidence intervals fo
bserved rejection rates of the test are 0.04955± 0.0015 and
.0977± 0.0021. InFig. 1, we plot the rejection rates for
imilar simulation study whereK = 20 as before,r = 0.01,
nd the count rate of the minor isotope varies from
00 Hz. From this study, we conclude that our hypoth

est is approximate and may break down when the numb
bserved minor counts is very small.
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Fig. 2. Observed B10 counts (4 s time bins) (top). Observed B11 counts (2 s
time bins) (bottom). We plot interpolated B11 values as triangles.

We list values of interpolation weights and interpolated
count values computed from a subset of the data (Table 1) in
Tables 2 and 3. Our subset consists of the first 15 cycles of
data. For these 15 cycles, we estimate the ratio of B10 and
B11 to be 0.27500 from the raw data. When the major counts
are interpolated with respect to the minor counts, we estimate
the isotopic ratio to be 0.27175± 0.00042. When the minor
counts are interpolated with respect to the minor counts, we
estimate the isotopic ratio to be 0.27189± 0.00041. The av-
erage of the estimates from the two interpolation schemes is
0.27182. The value of the goodness-of-fit statistic and asso-
ciatedp-value for testing the hypothesis that the true isotopic
ratio is constant in time are 17.10 and 0.195.

7. Simulation studies

7.1. Study 1: fixed number of bins

We next simulate Poisson count data where the count rate
for the major isotope is similar to the observed experiment.
The bins are the same as for the observed data (50 cycles
with �m = 4 s and�n = 2 s for B10 and B11). We model
the major count rate as

Fig. 3. Estimates of ratio of B10 to B11 isotopes computed from raw data
(top). Estimates of ratio of B10 to B11 isotopes computed from both inter-
polation schemes (bottom). In both plots, we plot the average of the two
interpolation estimates of the isotopic ratio as a reference line.

Table 1
Observed B10 and B11 count data

k tm(k) m(k) tn(k) n(k)

1 2.323 53988 5.788 96378
2 9.473 52256 12.943 94555
3 16.639 51329 20.123 93598
4 23.839 50232 27.314 91306
5 31.014 48984 34.499 89640
6 38.205 48392 41.684 87935
7 45.380 47811 48.855 86763
8 52.550 46242 56.025 85283
9 59.720 45525 63.200 82870
10 66.906 44834 70.386 81326
11 74.081 43465 77.556 79122
12 81.251 42583 84.731 78091
13 88.432 41736 91.902 76205
14 95.602 40350 99.082 73738
15 102.772 39694 106.247 71249

�m = 4 s and�n = 2 s.

λn(t) =
4∑

k=0

akt
k, (31)

where the polynomial model parameters are determined by
fitting this model to the observed major count data shown in
Fig. 2 by the method of weighted least squares. The agree-
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Table 2
Interpolated B11 (major) data

k αn(k) βn(k) γn(k) n̂(k)

1 Undefined Undefined 0.48498 Undefined
2 0.48498 0.51502 1.00026 95439
3 0.48524 0.51476 0.99801 94062
4 0.48324 0.51676 1.00180 92414
5 0.48504 0.51496 0.99916 90448
6 0.48420 0.51580 1.00039 88761
7 0.48459 0.51541 1.00007 87331
8 0.48466 0.51534 1.00036 86000
9 0.48502 0.51498 0.99926 84040

10 0.48427 0.51573 1.00038 82074
11 0.48466 0.51534 1.00036 80190
12 0.48502 0.51498 0.99888 78591
13 0.48389 0.51611 1.00079 77118
14 0.48468 0.51532 1.00032 74934
15 0.48500 0.51500 0.51500 72456

ment between the polynomial model and the observed ma-
jor count data is very close. In order to avoid clutter, we do
not plot the polynomial model prediction in the lower part of
Fig. 2. In our simulation study, we assume thatλm(t) = rλn(t)
wherer varies. For each value ofr, the expected number of
total observed minor counts is approximately 5.5r × 106

and the expected number of total observed major counts is
2.7 × 106. For the lowest value ofr = 2.7 × 10−6, the ex-
pected number of total minor counts, summed over all bins,
is approximately 15.

In general, the average of the estimates from the two inter-
polation schemes is less biased than the estimate computed
from the unaligned data or the estimate produced by either
interpolation method (Table 4). The standard deviations of
the estimates computed from each interpolation method, as
well as their average, are well predicted by Eqs.(13) and (18)
(Table 5). Finally, the rate at which we reject the hypothesis
test with nominal size 0.05 is close to 0.05 except for smallest
ratio (Table 6).

Based on the expected number of total major counts in
this simulation experiment, Eq.(3) predicts a fractional bias

Table 3
Interpolated B10 (minor) data

k αm(k) βm(k) γm(k) m̂(k)

1
1
1
1
1
1 ed

of approximately 3.7 × 10−7. This fractional bias is very
small compared to the bias due to time bin misalignment.
In a separate study, we equate the simulated count data to
their expected value. For this noise-free data, the fractional
bias of the average of the estimates computed from both in-
terpolation methods is 1.5 × 10−7. Thus, for cases where
the major count rate has a shape like that inFig. 2, asN
tends to infinity, we expect that our interpolation method
will introduce an asymptotic fractional bias of approximately
1.5 × 10−7. In the event that a bias of this magnitude is con-
sidered to be scientifically significant, one might estimate it
by a Monte Carlo method and correct the estimate accord-
ingly. The fractional standard deviation of theK − 1 isotopic
ratio estimates computed from the major–minor interpolation
method for the noise-free data is 1× 10−4. For very high
signal-to-noise ratio data like that we simulate, the hypothesis
test would falsely detect systematic temporal variation at this
level.

7.2. Study 2: variable number of bins

In our second study, we simulate Poisson count data cor-
responding to an experiment where a 100 s total observing
time is divided into a variable number of time intervals. The
widths of the minor isotope and major isotope intervals are
t mea-
s opes.
T ccur
i 0.2 s
o are
c at the
b s are
m e are
5 ting
m l not
b tion
o ing
d ing
m pes,
t a is
4 frac-
t val
d

el
t

E

w e
n l,
t

E

1 0.51538 0.48462 0.51538 53149
2 0.51577 0.48423 1.00038 51807
3 0.51611 0.48389 1.00034 50798
4 0.51568 0.48432 0.99957 49628
5 0.51537 0.48463 0.99969 48697
6 0.51512 0.48488 0.99976 48110
7 0.51534 0.48466 1.00022 47051
8 0.51534 0.48466 1.00000 45894
9 0.51573 0.48427 1.00038 45190
0 0.51498 0.48502 0.99926 44170
1 0.51534 0.48466 1.00036 43038
2 0.51539 0.48461 1.00005 42173
3 0.51604 0.48396 1.00065 41065
4 0.51464 0.48536 0.99861 40032
5 Undefined Undefined 0.48536 Undefin
he same. The spectrometer has two settings. In one, it
ures minor isotopes. In the other, it measures major isot
he transition from one setting to the other does not o

nstantly. In our simulation, we assume that there is a
verhead time during the transition when no count data
ollected. We assume that 0.2 s overhead time occurs
eginning of each bin since the major and minor isotope
easured in an alternating fashion. For instance, if ther
0 bins for counting major isotopes, and 50 bins for coun
inor isotopes, the width of each bin is 1 s. Since data wil
e collected during the initial 0.2 s of each bin, the frac
f the total 100 s observing time unavailable for record
ata is 20%. Similarly, if there are 100 bins for count
ajor isotopes and 100 bins for counting minor isoto

he fraction of the 100 s unavailable for recording dat
0%. In general, as the number of bins increases, the

ion of useful observing time relative to the full 100 s inter
ecreases.

For thekth interval for counting minor counts, we mod
he expected number of minor counts as

(m(k)) =
∫ tm(k)+�m/2

tm(k)−�m/2+δ

λm(t) dt, (32)

hereδ = 0.2 s and the width of the bin�m depends on th
umber of bins. Similarly, for thekth major isotope interva

he expected number of major isotopes counts is

(n(k)) =
∫ tn(k)+�n/2

tn(k)−�n/2+δ

λn(t) dt. (33)
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Table 4
Simulation study 1—fractional bias of estimate (×104)

Truer Unaligned Major–minor alignment Minor–major alignment Average of both
alignment estimates

1 134.95± 0.05 −0.27± 0.05 0.21± 0.05 −0.03± 0.05
0.27 135.01± 0.07 −0.21± 0.07 0.27± 0.07 0.03± 0.07
2.7E−03 135.88± 0.59 0.74± 0.59 1.13± 0.58 0.93± 0.59
2.7E−04 133.51± 1.85 −1.62± 1.86 −1.14± 1.83 −1.38± 1.84
2.7E−05 136.25± 5.85 3.31± 5.89 2.66± 5.81 2.99± 5.84
5.4E−06 141.57± 13.13 7.04± 13.18 6.93± 13.02 6.98± 13.08
2.7E−06 141.50± 18.71 2.31± 18.77 5.60± 18.55 3.96± 18.63

Assumed major isotope count rate based on Eq. (31) model for data shown inFig. 2.

Table 5
Simulation study 1—fractional standard deviation of estimate (×104)

Truer Unaligned Major–minor alignment Minor–major alignment Average of both
alignment estimates

1 7.58 7.54 (7.49) 7.51 (7.45) 7.51
0.27 10.38 10.36 (10.34) 10.28 (10.25) 10.31
2.7E−03 83.30 83.63 (83.72) 82.64 (82.67) 83.01
2.7E−04 261.89 262.59 (264.06) 259.40 (260.74) 260.60
2.7E−05 827.96 833.31 (834.38) 822.00 (823.86) 826.45
5.4E−06 1856.47 1864.16 (1859.43) 1840.68 (1836.07) 1849.66
2.7E−06 2646.67 2653.87 (2616.58) 2622.89 (2584.22) 2634.46

Assumed major isotope count rate based on Eq. (31) model for data shown inFig. 2. Mean predicted value in parentheses.

As before, we assume that the minor isotope is measured
first. For time 0 s< t < 100 s, we model the major count rate
as

λn(t) = λ exp

(−t

τ

)
(34)

and the minor count rate as

λm(t) = rλ exp

(−t

τ

)
, (35)

whereτ = 100 s/ln(2) andλ = 1000× ln(2) Hz (≈693 Hz)
andr = 0.1. At t = 100 s, the count rate is reduced by a factor
of 2 compared to its value att = 0.

In general, as the number of time binsK increases, the
fractional bias of the isotopic ratio computed from the raw
unaligned data decreases (Table 7). In all cases, the predicted
and actual fractional standard deviation of estimates from
either interpolation scheme are close (Table 8). However, as
the number of bins increases, the signal-to-noise ratio of the
data decreases since integrated overhead time depends on the
total number of bins. The rejection rate of tests of nominal
size 0.05 are close to their desired value for 10≤ K ≤ 100
(Table 9). For the case ofK = 200, the expected number
of observed minor counts per bin varied from about 3.5 to
1.75 over the experiment. We attribute the degradation of the
t ution
a data.
I 0.05,
a n
t

Table 6
Simulation study 1—fractional bias of estimate (×104)

Truer Meanχ2
r Rejection rate

1 47.5681± 0.0731 0.0546
0.27 47.7875± 0.0700 0.0494
2.7E−03 48.0845± 0.0687 0.0485
2.7E−04 48.0289± 0.0698 0.0498
2.7E−05 47.9043± 0.0705 0.0521
5.4E−06 47.9502± 0.0754 0.0671
2.7E−06 47.8509± 0.0801 0.0763

Assumed major isotope count rate based on Eq. (31) model for data shown in
Fig. 2. The hypothesis test has nominal size of 0.05. The 1-sigma sampling
error for a rejection rate of 0.05 is 0.0015 since the number of trials is 20 000.

8. Extra variability

8.1. Systematic errors

In some experiments, the goodness-of-fit statistic (Eq.
(26)) may be very large due to systematic errors even though
the isotopic ratio is constant for all cycles. Below we outline
a suggested strategy to quantify this systematic uncertainty.
Verification of our suggested method is a topic for further
study.

Our suggested method is based on the key assumptions
that the true isotopic ratio for theith cycle is a random vari-
abler(i) = r + δi, whereE(δi) = 0,VAR(δi) = σ2

sys, and the
realizations ofδi are independent. Based on the above as-
sumptions, we modify our goodness-of-fit statistic,χ2

r (Eq.
(26)) as follows
est performance to the fact that our chi-squared distrib
ssumption breaks down when applied to very low count

n general, for cases where the rejection rate differs from
bootstrap hypothesis test[7,12] might perform better tha

he one presented here.
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Table 7
Simulation study 2—fractional bias of estimate×104

Number of binsK Unaligned Major–minor alignment Minor–major alignment Average of both
alignment estimates

5 717.96± 1.58 −23.23± 1.69 24.87± 1.55 0.82± 1.59
10 352.16± 1.55 −7.50± 1.60 4.53± 1.54 −1.49± 1.56
50 72.61± 1.68 2.76± 1.68 3.15± 1.67 2.95± 1.68

100 34.04± 1.91 −0.69± 1.92 −0.65± 1.91 −0.67± 1.91
150 25.30± 2.33 1.98± 2.34 2.05± 2.33 2.02± 2.34
200 14.43± 3.32 −2.62± 3.32 −2.70± 3.32 −2.66± 3.32

Exponential count rate based on Eq.(34).

Table 8
Simulation study 2

Number of binsK Unaligned Major–minor alignment Minor–major alignment Average of both
alignment estimates

5 223.92 239.45 (240.06) 219.51 (220.10) 225.44
10 218.72 226.73 (227.40) 217.48 (218.37) 220.43
50 236.95 238.05 (237.42) 236.35 (235.58) 236.88

100 270.51 271.46 (272.47) 270.25 (271.41) 270.68
150 330.16 330.97 (333.10) 330.01 (332.24) 330.35
200 469.48 469.88 (470.49) 469.19 (469.58) 469.38

Exponential count rate based on Eq.(34). Fractional standard deviation of estimate×104. Mean predicted value in parentheses.

Table 9
Simulation study 2

Number of binsK Meanχ2
r Rejection rate

5 2.9592± 0.0169 0.0459
10 7.9692± 0.0280 0.0489
50 47.9222± 0.0697 0.0494

100 97.7559± 0.0993 0.0487
150 148.0495± 0.1238 0.0538
200 198.0556± 0.1463 0.0602

Exponential count rate based on Eq.(34). The hypothesis test has nominal
size of 0.05. The 1-sigma sampling error for a rejection rate of 0.05 is 0.0015
since the number of trials is 20 000.

χ2
r (σsys) =

K∑
k=2

(r̂(k) − r̂)2

V̂AR(r̂(k)) + σ2
sys

. (36)

We estimateσsysby requiring thatχ2
r (σsys) equals its expected

value under the null hypothesis that all variation is due to
Poisson counting statistics and the isotopic ratio is the same
for all cycles. Assuming that correlation effects due to inter-
polation are insignificant, for high count data sets whereK
is large enough, this expected value is approximatelyK − 2.
For low count data sets where this approximation is not valid,
a bootstrap resampling scheme similar to one in[7] might be
a better approach to determine the expected value of the test
statistic under the null hypothesis. Another strategy for deter-
mining σsys would be to require that

∫∞
χ2

r (σsys)
f (x) dx equals

0.5, wheref (x) is the pdf for a chi-squared distribution with
K − 2 degrees of freedom. A natural approximation for the
variance of the estimate ˆr due to both random variation and
the additional systematic cycle to cycle variation estimated
here isσ̂2 where

σ̂2 = V̂AR(r̂) + σ2
sys

K∑
k=2

w2
k, (37)

wherewk = n̂(k)/
∑K

j=2 n̂(j) andV̂AR(r̂) is given by Eq.(13)
or (18).

The validity of our suggested method is a subject for fur-
ther research. There may be some subtle degree-of-freedom
issues related to correlation induced by interpolation as well
as the usual low count concerns (when the chi-square distri-
bution assumption breaks down). Systematic errors that do
not vary from cycle to cycle, e.g., mass bias effects, would
not be quantified by our suggested approach.

8.2. Extra random variation

In this work, we have assumed that the observed count data
for any cycle is a realization of a Poisson process. Hence,
the mean and variance of the observed count data are as-
sumed to be the same. If the variance of the measured count
data is larger than the expected value, we expect that our
formulas for the variance of isotopic ratio estimates (Eqs.
(13), (18) and (28)) will underestimate the actual variances.
Failing to account for extra random variability may system-
atically inflate the value of the goodness-of-fit statistic com-
puted in Eq.(26), even if the isotopic ratio is constant over all
c

uiv-
a ta for
a le in
t od-
i ,
( q.
(

ycles.
In principle, one could do experiments to check the eq

lence of the mean and variance of observed count da
sample where we knew the isotopic ratio was stab

ime. Given this extra information, perhaps we could m
fy our variance approximations (Eqs.(14), (16), (18), (24)
25), (28), (29), (30)) and our goodness-of-fit statistic (E
26)). Alternatively, we could estimateσsys using Eq.(36)
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but interpretσsysdifferently. In this alternative interpretation,
σsys would quantify the effect of unaccounted extra random
variability in the data on our estimate ofr according to Eq.
(37). The validity of this approach is a subject for further
study.

9. Summary

In this work, we corrected SIMS measurements of iso-
topic counts for drift by aligning the isotopic time series
using two linear interpolation schemes. In one scheme, the
major isotope time series is aligned with respect to the mi-
nor isotope time series. In the other scheme, the minor iso-
tope time series is aligned with respect to the major iso-
tope time series. We averaged the isotopic ratio estimates
from both interpolation schemes. Our analytical formulas
(Eqs. (13) and (18)) closely predicted the standard devia-
tion of the isotopic ratio due to Poisson counting statistics
variation computed in Monte Carlo simulation experiments.
Since, on average, both Eqs.(13) and (18)predict nearly
the same standard deviation of the mean estimate, we sug-
gest that the user of our method report the larger of the
two.

We presented an approximate hypothesis test procedure to
d ea-
s ejec-
t alue.
T er of
m ery
l test
( the-
s ro-
v ta
s nd
i -
a rom
c topic
r ted a
m e of
t the
c stics.
T ther
s

ffects
a ects
i sub-
j re-
s n the
K ion
s oth-
e th
i aches
f r in-
s ount
r a

analysis approach[13]. In such an approach, the contin-
uously varying count rate might be modeled as a regres-
sion spline. Selecting the appropriate form and complex-
ity of the regression spline would be a research project. In
this work, we focused on the case where the total number
of observed minor counts was greater than 0. Our meth-
ods are not intended for the cases where the total number
of minor counts is 0. The 0 count case is a topic for further
study.
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Appendix A. Propagation-of-error method

Suppose thatx andy are independent random variables
with expected valuesµx andµy and variancesσ2

x andσ2
y .

Define the ratior = µx/µy and ratio estimate ˆr

r̂ = f (x, y) = x

y
.

F on
u

f

f

f

a

f

A
d on
a m 2
C q.
(

V

etect and quantify possible temporal variation of the m
ured isotopic ratio. For most of the cases studied, the r
ion rate of our test was close to the desired nominal v
he discrepancy was largest for cases where the numb
inor counts was very low or the number of bins was v

ow (Tables 6 and 9). For cases where the hypothesis
Eq. (26)) performance is inadequate, a bootstrap hypo
is test like that in[7] might be appropriate. We also p
ide a test data set (Table 1) from a subset of the boron da
hown inFig. 2, and list computed interpolation weights a

nterpolated count values inTables 2 and 3. We offered guid
nce on how to quantify systematic errors that vary f
ycle to cycle for cases where one knows that the iso
atio does not vary from cycle to cycle. We also sugges
ethod to quantify additional uncertainty in our estimat

he isotopic ratio for the case where the variability in
ount data is greater than predicted by Poisson stati
he validity of these two approaches is a subject for fur
tudy.

Here, we neglected dead time effects, mass bias e
nd background contributions. Accounting for these eff

n our estimation procedure and uncertainty analysis is a
ect beyond the scope of this work. In this work, we p
ented a hypothesis test for temporal variation based o
− 1 ratio estimates from the major–minor interpolat

cheme. It might be possible to develop a better hyp
sis test based on the 2(K − 1) ratio estimates from bo

nterpolation schemes. There are other possible appro
or drift correction besides the one described here. Fo
tance, one might simultaneously estimate the major c
ate λn(t) and the isotopic ratior using a functional dat
ollowing[7], we approximatef as a Taylor series expansi
sing its derivativesfx, fy andfxy. We have

ˆ (x, y) = f (µx, µy) + (x − µx)fx(µx, µy)

+ (y − µy)fy(µx, µy) + (x − µx)(y − µy)

× fxy(µx, µy), (A.1)

where

x(µx, µy) = 1

µy

y(µx, µy) = −µx

µ2
y

nd

xy(µx, µy) = − 1

µ2
y

.

s noted in Section3, we assume thatx and y are in-
ependent and hence uncorrelated. If for some reasx
nd y were correlated, we would add a covariance ter
OV(x, y)fx(µx, µy)fy(µx, µy) to the right hand side of E

A.1).
We approximate the variance of ˆr as

ÂR(r̂) = E[f̂ (x, y) − f (µx, µy)]2. (A.2)
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Hence

V̂AR(r̂) = σ2
x (fx(µx, µy))2 + σ2

y (fy(µx, µy))2

+ σ2
xσ2

y (fxy(µx, µy))2. (A.3)

Simplifying, we have that

V̂AR(r̂)

r2
= σ2

x

µ2
x

(
1 + σ2

y

µ2
y

)
+ σ2

y

µ2
y

. (A.4)

Appendix B. Codes

interpmajor = function(tm, m, tn, n, deltam, deltan) {
# interpolate major count time with respect to minor count time series
# assume that the minor isotope is measured first
# tm,tn are midpoints of observing intervals for minor and major isotope counts
# m,n are observed minor and major isotope counts
# deltam, deltan are length of minor and major observing intervals

K = length(m)
KK = K - 1
gamman = 1:K
alphan = 1:K
betan = 1:K
nhat = 1:K
Nhatsum = 0
Msum = 0

for(k in (2:K)) {
alphan[k] = (tn[k] - tm[k])/(tn[k] - tn[k
betan[k] = (tm[k] - tn[k - 1])/(tn[k] - tn
nhat[k] = alphan[k] * n[k - 1] + betan
Nhatsum = Nhatsum + nhat[k]
Msum = Msum + m[k]

}
for(k in (2:KK)) {

gamman[k] = alphan[k + 1] + betan[k]

}

Comments

One could include more terms in our Eq.(A.1) Tay-
lor series expansion. For instance, in a complete second
order expansion, we would add12(y − µy)2fyy(µx, µy) to
the right-hand side of Eq.(A.1), where fyy(µx, µy) =
2µx/µ3

y. However, the relative contribution due to this
additional term to the variance approximation for ˆr is
negligible.
}
gamman[1] = alphan[2]
gamman[K] = betan[K]

rhat = (Msum/deltam)/(Nhatsum/deltan)
varMsum = Msum # variance approximation for Msum
varNhatsum = sum(gamman ∧2 * n) # variance approximation for Nhatsum
term1 = varMsum * (1 + varNhatsum/Nhatsum ∧2)
term2 = ((deltam * rhat)/deltan) ∧2 * varNhatsum
term3 = (deltan/(deltam * Nhatsum)) ∧2
unc2 = (term1 + term2) * term3
unc = sqrt(unc2) # random 1-sigma uncertainty estimate

out = 1:2
out[1] = rhat # isotopic ratio estimate
out[2] = unc # 1-sigma random uncertainty estimate
out # return isotopic ratio and associated uncertainty
- 1])
[k - 1])
[k] * n[k]
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interpminor = function(tm, m, tn, n, deltam, deltan) {
# interpolate minor count time series with respect to major count time series

K = length(m)
KK = K - 1
alpham = 1:K
betam = 1:K
mhat = 1:K
gammam = 1:K
Mhatsum = 0
Nsum = 0

for(k in (1:KK)) {
alpham[k] = (tm[k + 1] - tn[k])/(tm[k + 1] - tm[k])
betam[k] = (tn[k] - tm[k])/(tm[k + 1] - tm[k])
mhat[k] = alpham[k] * m[k] + betam[k] * m[k + 1]
Nsum = Nsum + n[k]
Mhatsum = Mhatsum + mhat[k]

}

for(k in (2:KK)) {
gammam[k] = alpham[k] + betam[k - 1]

}

gammam[1] = alpham[1]
gammam[K] = betam[K - 1]

}

varNsum = Nsum
varMhatsum = sum(gammam∧2 * m)

rhat = (Mhatsum/deltam)/(Nsum/deltan)

term1 = varMhatsum * (1 + varNsum/Nsum ∧2)
term2 = ((deltam * rhat)/deltan) ∧2 * varNsum
term3 = (deltan/(deltam * Nsum)) ∧2
unc2 = (term1 + term2) * term3
unc = sqrt(unc2)

out = 1:2
out[1] = rhat # isotopic ratio estimate
out[2] = unc # 1-sigma random uncertainty estimate
out # return isotopic ratio and associated uncertainty
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temporaltest = function(tm, m, tn, n, deltam, deltan) {
# test of hypothesis that the true isotopic ratio does not vary in time

K = length(m)
KK = K - 1
gamman = 1:K
alphan = 1:K
betan = 1:K
nhat = 1:K
gof = 0
Nhatsum = 0
Msum = 0
for(k in (2:K)) {

alphan[k] = (tn[k] - tm[k])/(tn[k] - tn[k - 1])
betan[k] = (tm[k] - tn[k - 1])/(tn[k] - tn[k - 1])
nhat[k] = alphan[k] * n[k - 1] + betan[k] * n[k]
Nhatsum = Nhatsum + nhat[k]
Msum = Msum + m[k]

}
for(k in (2:KK)) {

gamman[k] = alphan[k + 1] + betan[k]
}
gamman[1] = alphan[2]
gamman[K] = betan[K]
rhat = (Msum/deltam)/(Nhatsum/deltan) # isotopic ratio estimate

# computed from pooled data

}

for(k in (2:K)) {
est = (m[k]/deltam)/(nhat[k]/deltan) # get estimates of r

# for each cycle
varnk = alphan[k] ∧2 * n[k - 1] + betan[k] ∧2 * n[k]
varmk = ((deltam * rhat)/deltan) * nhat[k]
term1 = varmk * (1 + varnk/nhat[k] ∧2)
term2 = ((rhat * deltam)/deltan) ∧2 * varnk
term3 = (deltan/(deltam * nhat[k])) ∧2
varest = (term1 + term2) * term3
gof = gof + (est - rhat) ∧2/varest

}
df = K - 2 # compute approximate degrees of freedom for gof
pval = 1 - pchisq(gof, df) # compute approximate p-value
out = 1:2
out[1] = gof
out[2] = pval
out # return goodness-of-fit statistic and p-value
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