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Abstract

In secondary ion mass spectrometry measurement systems, the count rate of isotopes may vary in time as a particle is consumed during the
analysis. Since isotopes are measured sequentially, this drift can introduce systematic error into the estimate of the ratio of any two isotopes.
We correct the measurements for drift by aligning the time series of isotopic pairs using a linear interpolation approach. We estimate an
isotopic ratio for each of two cases. In one case the time series of the more abundant isotope is aligned with respect to the time series of the
less abundant isotope. In the second case the less abundant isotope is aligned with respect to the more abundant one. We average both of the
estimates to get a drift-corrected estimate. We present an analytical formula for the random uncertainty of the isotopic ratio that accounts for
correlation introduced by interpolation. We also present an approximate hypothesis test procedure to detect and quantify possible temporal
variation of the measured isotopic ratio during a single analysis. In a Monte Carlo study, the performance of the methods is quantified based
on analysis of simulated data with complexity similar to that of real data generated by a secondary ion mass spectrometer.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction only one isotope at a time is measured in conventional ion
counting systems, this drift can introduce systematic error
Secondary ion mass spectrometry (SIMS) is a specializedinto the estimate of the ratio of any two isotopes. Hence, cor-
analytical method that can be used to perform localized iso- recting the SIMS instrument for drift is critical to the accurate
topic ratio measurements on a micrometer scale. Such meadetermination of isotopic ratios and their associated random
surements have broad applicability in areas of geology, as-uncertainties. Although chemical elements often have more
tronomy, and biology1]. A specific application area ofrecent  than two isotopes, we consider their measurements here in a
interest is nuclear forensics, whereby SIMS has been appliedpairwise fashion, with the more abundant isotope of the pair
to the search for evidence of uranium enrichment activities designated as the major isotope and the less abundant one as
through the measurements of the relative abundances of Uthe minor isotope.
235 and U-238 in micrometer-sized partic[2s6]. In SIMS In each of two interpolation schemes, we align one isotope
measurement systems, the count rate of isotopes may varytime series with respect to the other. In the major—-minor in-
in time as a particle is consumed during the analysis. Sinceterpolation scheme, the minor time series is fixed and the
major time series is interpolated. In the minor-major in-
* Corresponding author. Tel.: +1 303 497 3895; fax: +1 303 497 3012. terpolation scheme, the major time series is fixed and the
! Contributions of NIST staff to this work are not subject to copyright minor time series is interpolated. In simulation studies, we
laws in the US. , _ show that the average of the estimates obtained from both
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interpolation schemes is superior to the estimate computed
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lation scheme for the case where the count rate varies insurements) of Poisson processes with expected velusasd
time. M. Since the probability thaV = 0 is nonzero, the expected

We present a formula for the approximate standard devi- value offis infinite. In order to construct an estimate with fi-
ation of the isotopic ratio estimated from the aligned data. nite bias, we restrict attention to realizations of the data where
Our formula accounts for the effect of interpolation on the the observed denominator term is positive. In effect, this
variability of the data. We also present an approximate hy- means that the experimenter would ignore data whvete O.
pothesis test procedure to detect and quantify possible sys+or most experimentg,is large andP(N = 0) = exp(—21) is
tematic temporal variation in the isotopic ratio time series negligible. Thus, this restriction has no practical consequence
data. Our new test is related to tests for spatial variation of on data acquisition in typical experiments of interest.
isotopic ratio estimates computed from spatial fiataHow- The conditional probability of observing a particular pos-
ever, these methods were not originally designed for the caseitive realization ofN is
where SIMS data are interpolated in time. N

In this work, we neglect other systematic errors such as p(N|N > 0) = 1 expt-2)A . (1)
dead time effect§8,9], mass bias effects and background 1-exp(-=2) N
contamination. Accounting for these effects in our estimation ope can show that the expected value of the inverse of the
procedure and uncertainty analysis is straightforward but a positive realizations ol is
subject beyond the scope of this work.

The concept of correcting mass spectrometric time series . ( 1 ) 1 ( 1)

. . i . —IN>0)~=[1+-). )
data for the effects of drift by a linear interpolation method N A
is certainly not new. The novel contributions of this work in- _ L ) _
clude: (1) arigorous statistical treatment of the uncertainty of Suppose thaM is a realization of a Poisson process with
the estimated isotopic ratio computed from the drift-corrected expected valuei. If M andN are independent, it follows
time series; (2) a method to reduce the systematic error of thethat
isotopic ratio estimate computed from the interpolated data M 1
by averaging estimates computed from two different interpo- £ (ﬁ'N = 0) = E(MIN > O)E (ﬁlN = O)
lation schemes; and (3) development of statistical methods
to detect and quantify either systematic error or additional ~r (1 + }) . (3)
random variability (beyond counting statistics variability) in A
the isotopic ratio time series.

In Section2, we comment on some mathematical difficul-
ties associated with the expected value of the ratio of Poisson
random variables. In Sectid) we present a measurement
model for the data. In Sectiofy we develop our alignment
methods and an approximate formula for the random uncer-
tainty of the isotopic ratio computed from the drift-corrected
data. In Sectiob, we develop a hypothesis test approach to
detect possible temporal variation in the isotopic ratio of a
particle. In Section$ and 7 we quantify the performance
of our methods for simulated data with complexity typical
of experimental data collected at NIST and remark on the
limitations of our methods. In Sectid) we briefly discuss
a suggested method to quantify possible systematic errors in
the data for cases where we know that the isotopic ratio is
stable in time. We also discuss a method to quantify the ef-
fect of unaccounted extra random variability on our estimate
of the isotopic ratio.

For more discussion about the expected values of ratios of
random variables, s¢&0, p. 180]

Our analysis demonstrates that the expected value of the
measured isotopic ratio computed for data in the restricted
sample space is finite. Moreover, the fractional bias of the
estimate-’= M/N is approximately 1E(N).

3. Measurement model

We assume that minor and major isotope counts are
observed in an alternating scheme. Tkth, wherek =
1, ..., K, minor isotope measurement is made over a count-
ing time interval centered a, (k). Thekth major isotope is
measured over a counting time interval centeregl(a). The
widths of the minor and major intervals (bins) are respec-
tively A,, andA,,. We denote the measured major and minor
isotope counts for thith cycle of the experiment agk) and
m(k). We assume that the observed quantiti€s) andn (k)

- are realizations of Poisson processes with expected values
2. Preliminary remarks

tm (k)+Am /2
In this work, we present a method to reduce the systematicE(m(k)) = / Am (1) dt (4)

error, i.e., bias, of isotopic ratio estimates due to systematic in(k)=4m/2

temporal variation of the signals. The bias of a parameter es-and

timate is the difference between its expected value and the ()42, /2

true value of the parameter. Consider the estimateV/ N, E(n(k)) = / An(2) dt, (5)

whereM andN are independent realizations (ion count mea- ta(k)—An/2
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where the count ratek, (r) andx, () may vary in time. In compensate for systematic error due to a periodically vary-
this work, we assume that(k) andn(k) are independent ing count rate (with a large amplitude) when the frequency
random variables. Thus, the fluctuatiom&) — E(m(k)) and of the sinusoidal variation equals the data sampling rate.
n(k) — E(n(k)) are uncorrelated even thoudt(m(k)) and

E(n(k)) are dependent. 4.1. Alignment: major to minor
For stable count rates, a natural estimate for the isotopic
ratior is Without loss of generality, we assume that the minor iso-
K tope is measured first. We define the predicted number of
- An > k=1 m(k) _ (6) major counts corresponding to a time with the same center as
Ap Zlen(k) thekth minor isotope measurement/gg). After alignment,
we get a series of isotope count pairs(k), n(k)), where
For the case where the count rates vary in time, the abovey = 2 ... K. A linear interpolation approach yields
estimate may be biased because the measurements of the
corresponding minor and major isotope counts do not occur (k) = e (k)n(k — 1) + B, (k)n (k) @)
at the same time. where
) = 8 = in ) @)
4. Alignment t(k) = ta(k — 1)
and
In one linear interpolation scheme, we predict the number i) — 1ok — 1)
of major counts that would have been observed h#k) Bu(k) = = 2 9)

equaled,, (k). Thatis, we align the major isotope time series tn(K) = ta(k — 1)

with respect to the minor isotope time series. In the other  For this interpolation scheme, the estimated value of the

linear interpolation scheme, we predict the number of minor isotopic ratio is

counts that would have been observedhdd) equaled, (k). M A

Because the actual count rate may not be exactly a linearr = — —=,

function of time, each estimate is biased. In general, for the N Am

cases studied here, the two interpolation schemes producavhere

estimates with biases of comparable magnitude but different K

sign. Thus, we average the two estimates to reduce bias. Wey; _ Z m(k), (11)

will demonstrate that the isotopic ratio estimates produced =2

by each of the interpolation schemes have similar standard

deviations. Because the two estimates are highly correlated,and

the standard deviation of the average of the estimatesis nearly K

the same as the standard deviation of either estimate. N = Z n(k). (12)
In either linear interpolation scheme, we predict the ob- k=2

served number of counts for an interval where no data was

taken by taking a weighted average of the observed countsgjnmijar 1o the one described [fi], we estimate the variance

from the two nearest intervals where data was taken. For theof 7 as

special case where the count rate varies linearly with time, 5

the systematic error associated with either linear interpolation, =&~y _ [ 2n T S TR R

scheme vanishes because the expected value of the predicte\éA\R(r) N (AmN) [VAR(M)(l N VAR(Y))

number of counts for any interval equals the expected value 2

of what would have been observed for that interval had data + (Amr> \TA\R(N):| ) (13)

been taken. In general, the accuracy of either interpolation A

scheme depends on the validity of the assumption that the

count rate can be approximated as a linear function of time in

the immediate neighborhood that includes the interval of in-

terestandthe two nearestintervals. The validity of our method K

does not depend on whether the count rate is monotonically VAR(M) = Zm(k). (24)

increasing or decreasing in any time interval of interest. For k=2

the general case where the count rate is a nonlinear function

of time but approximately linear over contiguous time inter-

vals where data is taken, we expect our method to work well. K

One can construct cases where our method is not expectedV = Y _ ya(k)n(k), (15)

to work well. For instance, our averaging method will not k=1

(10)

Based on a propagation-of-error methdkppendix A

n

Based on the assumption that the observed counts are Poisson
random variables, we approximate the variancMats

From Eqs(7) and (12) we have that
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wherey, (1) = o, (2), yu(K) = Bu(K), andy, (k) = o (k +
1)+ Bu(k) for 1 < k < K. If x andy are independent ran-
dom variables ana andb are constants, VAR + by) =
a®VAR(x) 4+ b?VAR(y). Hence, we approximate the variance
of N as

K
D ViR (k).

k=1

VAR(N) = (16)

4.2. Alignment: minor to major

The theoretical development for the alternative alignment
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where y,,(1) = (1), ym(K) = Bn(K — 1), and yy (k) =
am(k) + Bk —1)forl < k < K.

If either M or M is 0, Eq.(13) or (18) predicts that
VAR(#) =0. Thus, for low count situations where the ob-
served value o or M is 0, our methods are not appropriate.
The study of such 0 count cases is a topic for further study. In
all cases studied here, the estimated isotopic ratio is nonzero.

5. Hypothesis test for temporal variation

We develop a hypothesis test to detect possible system-

scheme, where we align the minor isotope time series with atic temporal variation of isotopic ratio measurements for
respectto the major isotope time series, is similar to the above.the major—minor interpolation scheme. The null hypothesis

For the minor—-major interpolation scheme,

L Ma,
and
_ Ap \2To— - _
VAR(?) = <A N ) [VAR(M)(1+N_2VAR(N))
A\ 2
+ (A’"’> \TA\R(N):| , (18)
Ap
where
K-1
N =" n(k) (19)
k=1
and
K-1
M =" k). (20)
k=1
Thekth interpolated minor count value is
(k) = om(k)m(k) + B (k)m(k + 1), (21)
where
_ tm(k + 1) - tn(k)
w0 D0 2
and
(k) = twm(K)
)= D - )
We approximate the varianceshfand i/ as
K-1
VAR(N) = > n(k) (24)
k=1
and
. K
VAR(M) = Y v/ (K)m(k), (25)
k=1

is that the isotopic ratio is constant in time and that the ran-
dom variation of the data is due to Poisson counting statistics.
As a caveat, it is possible that our test could detect system-
atic variation in the data unrelated to the temporal variation
of the true isotopic ratio. Possible sources of such extra vari-
ation include imperfections of interpolation algorithms and
random detector calibration errors or other instrumental in-
stabilities that are not accounted for here. For cases where
background signals are significant, systematic errors due to
imperfect methods for background correction could also be
difficult to distinguish from temporal variation of the true iso-
topic ratio. In[7], we quantified the systematic spatial varia-
tion of the isotopic ratio for cases where the evidence, based
on the test statistic value, for such variation was strong. In
Section8, we offer guidance on how to modify the approach
in [7] for the problem studied here.

Our goodness-of-fit statistig?, measures the difference
between the ratio estimated for each cycle and the ratio es-
timated from all pooled data. The basic idea is to divide this
difference by an approximation for the standard deviation of
this difference. The sum of the squared standardized residuals
is

(F(k) = 7)
Z VAR(r(k)) (26)
where the estimated ratio for each cycle is
Ly m(k) Ay
(k) = 70 Dy (27)

and the estimate from the pooled dats tomputed using
Eg. (10). Using the same methodology as in the previous
section, we approximate the variance @) using a standard
propagation-of-error approach as

2
VAR(#(k)) = (A—> [\ZA\R(m(k))

A (k)

2
x (1 + A~ 2(k)VAR(R(K))) + (AA’"’) \ﬁ?R(h(k))} .

n

(28)
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Based on Eq(7), we approximate the variance of tkeh nominal size 0.05 test
interpolated major count and tikh observed minor count 0.053
as 0.052-
—_ . 2 2 0.051
VAR(R(K)) = a2(k)n(k — 1)+ B2(k)n(k), (29) o o
= 0.050
S
where %i 0.049- ‘ ‘
0.048-
N At .
VAR(m(k)) = A n(k). (30) 0.047-
! 0'046_| T T T T T T T L

1 10 100
minor isotope count rate (Hz)

nominal size 0.1 test

rejection rate

Assuming that th&k — 1 termsr{k) = m(k)/n(k) are inde-
pendent Gaussian (normal) random variables, and the Eq
(28) variance approximation is exact, the test statis(ﬁc

would have a chi-squared distribution wifti — 2 degrees 01057

of freedom. The sum o independent Gaussian random

variables (each with expected value 0) has a chi-squared dis: | ‘

tribution with M degrees of freedom. Our test statistic is as- ¢ 0100 1 |

sumed to hav&k — 2 degrees of freedom rather th&an— 1 T

degrees of freedom because we use an estimaie tie nu- | |

merator terms in Eq26). In general, the degrees of freedom 0.095-

of goodness-of-fit statistics computed frdfnindependent

observations where the model tjadjustable parameters is

K—j. 0.090- :

If the null hypothesis is true, then all random variability in 1 10 100
the data is due to Poisson counting statistics. Suppose that wi minor isotope count rate (Hz)
compute a partiCUIar value QE from a data set. Thﬂvalue Fig. 1. Estimated rejection rate of hypothesis tests for case where.01

. dee] : .1 3
fOI’ a glver? data S?t Iv‘fx? f(x)dx, Wheref(_x)_ls the proba- angd the count ratesJ are stable in ti):rﬁe. The number of simulated pairs of
bility density function (pdf) of the test statistic when the null  ynaligned minor-major counts is = 20.
hypothesisis true. In our work, we assume tfi@t) is the pdf
for a chi-squared distribution witi — 2 degrees of freedom. g, Example: real data
A very smallp-value, say less than 0.05, is strong evidence
for rejecting the null hypothesis. In some cases, researchers e analyze 50 cycles of SIMS measurements of boron
reject the null hypothesis only if the test statistic exceeds a jsotopes B10 and B11 from a minute quantity of boron salt
selected critical value. To construct a test with nominal size (Fig. 2). The isotopic ratio B10/B11 estimate from the raw
«, we chose a critical value such that the null hypothesis is re- data pairs, uncorrected for instrumental mass bias, is 0.27594,
jected with probabilityc. For our case, the critical level fora  whereas the two interpolation schemes yield estimates of
test with nominal size (false detection rate) 0.05 correspondsg 27202+ 0.00028 (major interpolated) B7216-+ 0.00028
to the 0.95 quantile, i.e., 95th percentile, of a chi-squared (minor interpolated). In this worky 1o corresponds to an
distribution withK — 2 degrees of freedom. approximate 68% confidence interval, i.e4 &-sigma inter-

To illustrate our approach, we estimate false detection yva|. The average of these two estimates, 0.27209, is plotted
rates for the case where the major and minor count time as a reference line ifiig. 3. The test statistigZ andp-value
intervals are both 1s, and both the major and minor count for the hypothesis test for temporal variation are 47.238 and
rates are 1000 Hz. Thus,= 1. The midpoints of the count 0.504. Since the-value is large compared to 0.05, we con-
time intervals are such that(k) = g(k) = 0.5 (Egs. (8) clude that Poisson counting statistical variability explains the
and (9) for all k. We simulatek = 20 pairs of unaligned  observed cycle to cycle variability in the data.

(m(k), n(k)). For tests with nominal size 0.05 and 0.1, the  |n Appendix B we list software codes that implement our
corresponding approximate 68% confidence intervals for the methods. The codes are written in the languag&lRwhich
observed rejection rates of the test a@®55+ 0.0015and s a public domain software package that can be downloaded.
0.0977+ 0.0021. InFig. 1, we plot the rejection rates for a  |n this work and in the codes, we assume that the minor iso-
similar simulation study wher& = 20 as before; = 0.01, tope is measured first. If the major isotope is measured first,
and the count rate of the minor isotope varies from 1 to the codes can be run without modification if each isotopic
100 Hz. From this study, we conclude that our hypothesis time series is reversed. That is, transform the time midpoints
testis approximate and may break down when the number offrom ¢1, ¢,, ..., tx into —tx, —tk_1, ..., —t1 and the count
observed minor counts is very small. time series fromy, no, ..., ng iNtOng, ng_1, ..., ni.
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Fig. 2. Observed B10 counts (4 s time bins) (top). Observed B11 counts (2 S Fig. 3. Estimates of ratio of B10 to B11 isotopes computed from raw data

time bins) (bottom). We plot interpolated B11 values as triangles. (top). Estimates of ratio of B10 to B11 isotopes computed from both inter-
polation schemes (bottom). In both plots, we plot the average of the two
interpolation estimates of the isotopic ratio as a reference line.

We list values of interpolation weights and interpolated Table 1

count values computed from a subset of the daable ) in Observed B10 and B11 count data
Tables 2 and 30ur subset consists of the first 15 cycles of « 1 (k) m(k) 1 (k) n(k)
data. For these 15 cycles, we estimate the ratio of B10 and; 2393 53988 5.788 96378
B11to be 0.27500 from the raw data. When the major counts 2 9.473 52256 12.943 94555
are interpolated with respect to the minor counts, we estimate3 16.639 51329 20.123 93598
the isotopic ratio to be.@7175+ 0.00042. When the minor 4 ;i-gii ig;gi ;Z-i;g g;ggg
coqnts are mfterpolgted ywth respect to the minor counts, we 38.205 48392 41684 87035
estimate the isotopic ratio to be27189+ 0.00041. Theav- 45.380 47811 48.855 86763
erage of the estimates from the two interpolation schemes iss 52.550 46242 56.025 85283
0.27182. The value of the goodness-of-fit statistic and asso-9 59.720 45525 63.200 82870
ciatedp-value for testing the hypothesis that the true isotopic 12 g’i-ggi igig‘s‘ ;g-:gg %igg
ratio is constant in time are 17.10 and 0.195. 12 81251 42583 84.731 78091
13 88.432 41736 91.902 76205
14 95.602 40350 99.082 73738
7 Simulation studies 15 102.772 39694 106.247 71249
A, =4sandA, = 2s.
7.1. Study 1: fixed number of bins 4
_ k
We next simulate Poisson count data where the count rate)‘”(t) - Zoa"t ’ (31)
k=

for the major isotope is similar to the observed experiment.

The bins are the same as for the observed data (50 cyclesvhere the polynomial model parameters are determined by
with A, =4s andA, = 2s for B10 and B11). We model fitting this model to the observed major count data shown in
the major count rate as Fig. 2 by the method of weighted least squares. The agree-



K.J. Coakley et al. / International Journal of Mass Spectrometry 240 (2005) 107-120 113

Table 2

) of approximately & x 10~7. This fractional bias is very
Interpolated B11 (major) data

small compared to the bias due to time bin misalignment.

K on (k) P (k) va (k) (k) In a separate study, we equate the simulated count data to
1 Undefined Undefined 0.48498 Undefined their expected value. For this noise-free data, the fractional
g g-jgggi g-giigg é-gggg‘; giggg bias of the average of the estimates computed from both in-
1 0.48324 051676 100180 92414 terpola’qon methods is.5 x 107, Th.us, for cases where
5 0.48504 0.51496 0.99916 00448 the major count rate has a shape like thafig. 2 asN
6 0.48420 0.51580 1.00039 88761 tends to infinity, we expect that our interpolation method
7 0.48459 0.51541 1.00007 87331 will introduce an asymptotic fractional bias of approximately
g g-jgggg g-gﬁgg é-ggggg 22828 1.5 x 1077, In the event that a bias of this magnitude is con-

10 0.48427 051573 100038 82074 sidered to be scientifically significant, one mlght estimate it

11 0.48466 0.51534 1.00036 80190 by a Monte Carlo method and correct the estimate accord-

12 0.48502 0.51498 0.99888 78591 ingly. The fractional standard deviation of tke— 1 isotopic

13 0.48389 0.51611 1.00079 77118 ratio estimates computed from the major—-minor interpolation

14 0.48468 0.51532 1.00032 74934 method for the noise-free data isx110~%. For very high

15 0.48500 0.51500 0.51500 72456

signal-to-noise ratio data like that we simulate, the hypothesis
test would falsely detect systematic temporal variation at this

ment between the polynomial model and the observed ma-level.

jor count data is very close. In order to avoid clutter, we do

not plot the polynomial model prediction in the lower partof 7 2. study 2: variable number of bins
Fig. 2 In our simulation study, we assume thgi(z) = rA,,(¢)

wherer varies. For each value of the expected number of In our second study, we simulate Poisson count data cor-
total observed minor counts is approximately 5.5 10° responding to an experiment where a 100 total observing
and the expected number of total observed major counts istime s divided into a variable number of time intervals. The
2.7 x 10°. For the lowest value of = 2.7 x 10°°, the ex-  widths of the minor isotope and major isotope intervals are
pected number of total minor counts, summed over all bins, the same. The spectrometer has two settings. In one, it mea-
is approximately 15. sures minor isotopes. In the other, it measures major isotopes.

In general, the average of the estimates from the two inter- The transition from one setting to the other does not occur
polation schemes is less biased than the estimate computeghstantly. In our simulation, we assume that there is a 0.2's
from the unaligned data or the estimate produced by either gyerhead time during the transition when no count data are
interpolation methodTable 4. The standard deviations of  ¢gjlected. We assume that 0.2 s overhead time occurs at the
the estimates computed from each interpolation method, aspeginning of each bin since the major and minor isotopes are
well as their average, are well predicted by H4S) and (18)  measured in an alternating fashion. For instance, if there are
(Table 3. Finally, the rate at which we reject the hypothesis 50 pins for counting major isotopes, and 50 bins for counting
test with nominal size 0.05 is close to 0.05 except for smallest jnor isotopes, the width of each binis 1 s. Since data will not
ratio (Table 9. be collected during the initial 0.2 s of each bin, the fraction

Based on the expected number of total major counts in of the total 100's observing time unavailable for recording
this simulation experiment, E¢3) predicts a fractional bias  gata is 20%. Similarly, if there are 100 bins for counting

major isotopes and 100 bins for counting minor isotopes,

Table 3 the fraction of the 100 s unavailable for recording data is
Interpolated B10 (minor) data 40%. In general, as the number of bins increases, the frac-
K (k) B(k) ym(K) ) tion of useful observing time relative to the full 100 s interval
1 0.51538 0.48462 0.51538 53149 decreases. o
5 051577 0.48423 1.00038 51807 For thekth interval for counting minor counts, we model
3 0.51611 0.48389 1.00034 50798 the expected number of minor counts as
4 0.51568 0.48432 0.99957 49628
5 0.51537 0.48463 0.99969 48697 tm (k)+Am /2
6 0.51512 0.48488 0.99976 48110 E(m(k)) = / Am(2) dt, (32)
7 0.51534 0.48466 1.00022 47051 tm (k)—Am [2+38
8 0.51534 0.48466 1.00000 45894 ) .
9 0.51573 0.48427 1.00038 45190 wheres = 0.2 s and the width of the bin,,, depends on the
10 0.51498 0.48502 0.99926 44170 number of bins. Similarly, for thith major isotope interval,
1 0.51534 0.48466 1.00036 43038 the expected number of major isotopes counts is
12 0.51539 0.48461 1.00005 42173
13 0.51604 0.48396 1.00065 41065 tn (k)£ /2
14 0.514§4 0.48536 0.99861 40032. E(n(k)) = An(2) . (33)
15 Undefined Undefined 0.48536 Undefined ta(k)—An/2+8
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Table 4
Simulation study 1—fractional bias of estimatel(0*)

Truer Unaligned Major—-minor alignment Minor—major alignment Average of both
alignment estimates

1 134.95+ 0.05 —0.27+£0.05 021+ 0.05 —0.03+0.05

0.27 135.0% 0.07 —0.21+0.07 027+ 0.07 003+ 0.07
2.7E-03 135.88t 0.59 Q74+ 0.59 113+ 0.58 093+ 0.59
2.7E-04 133.51+ 1.85 —1.62+1.86 —114+1.83 —1.38+1.84
2.7E-05 136.25+ 5.85 331+5.89 266+ 5.81 299+ 5.84
5.4E-06 141.57+ 13.13 704+ 1318 693+ 1302 698+ 1308
2.7E-06 141.50+ 18.71 231+ 1877 560+ 1855 396+ 1863

Assumed major isotope count rate based on Eqg. (31) model for data sh&ign i

Table 5
Simulation study 1—fractional standard deviation of estimat&Q()

Truer Unaligned Major—minor alignment Minor—major alignment Average of both
alignment estimates
1 7.58 754 (7.49) 751 (7.45) 751
0.27 1038 1036 (1034) 1028 (1025) 1031
2.7E-03 8330 8363(8372) 8264 (8267) 8301
2.7E-04 26189 26259 (26406) 25940 (26Q074) 26060
2.7E-05 82796 83331(83438) 82200 (82386) 82645
5.4E-06 185647 186416 (185943) 184068 (183607) 184966
2.7E-06 264667 265387 (261658) 262289 (258422) 263446

Assumed major isotope count rate based on Eqg. (31) model for data sh&ign th Mean predicted value in parentheses.

As before, we assume that the minor isotope is measuredTable 6 _ _ _
first. For time 0's< ¢ < 100's, we model the major count rate  Simulation study 1—fractional bias of estimate1(0*)

as
(1) = A exp(?) (34)
and the minor count rate as

Am(t) = ra exp(%t) , (35)

wherer = 100s/In(2) and. = 1000x In(2) Hz (=693 Hz)
andr = 0.1. Atr = 100 s, the countrate is reduced by a factor
of 2 compared to its value at= 0.

In general, as the number of time biKsincreases, the

Truer Mean 2 Rejection rate
1 47.5681+ 0.0731 0.0546
0.27 47.7875+ 0.0700 0.0494
2.7E-03 48.0845+ 0.0687 0.0485
2.7E-04 48.0289%+ 0.0698 0.0498
2.7E-05 47.9043+ 0.0705 0.0521
5.4E-06 47.9502+ 0.0754 0.0671
2.7E-06 47.8509+ 0.0801 0.0763

Assumed major isotope count rate based on Eqg. (31) model for data shown in
Fig. 2 The hypothesis test has nominal size of 0.05. The 1-sigma sampling
error for arejection rate of 0.05 is 0.0015 since the number of trials is 20 000.

fractional bias of the isotopic ratio computed from the raw g, Extra variability

unaligned data decreasdsble 7. In all cases, the predicted

and actual fractional standard deviation of estimates from g.1. Systematic errors

either interpolation scheme are clo3alfle §. However, as

the number of bins increases, the signal-to-noise ratio of the

size 0.05 are close to their desired value ford & < 100
(Table 9. For the case oK = 200, the expected number

1.75 over the experiment. We attribute the degradation of the

a bootstrap hypothesis tg3t12] might perform better than
the one presented here.

In some experiments, the goodness-of-fit statistic (Eq.
data decreases since integrated overhead time depends on theg)) may be very large due to systematic errors even though
total number of bins. The rejection rate of tests of nominal the isotopic ratio is constant for all cycles. Below we outline
a suggested strategy to quantify this systematic uncertainty.
Verification of our suggested method is a topic for further
of observed minor counts per bin varied from about 3.5 to study.
Our suggested method is based on the key assumptions
test performance to the fact that our chi-squared distribution that the true isotopic ratio for thiéh cycle is a random vari-
assumption breaks down when applied to very low countdata. abler(i) = r + §;, whereE(s;) = 0, VAR(S;) = 02, andthe

In general,for caseswherethe TEjeCtion rate differsfrom 0.05, realizations Ofai are independent_ Based on the above as-
sumptions, we modify our goodness-of-fit statisjié, (Eq.

(26)) as follows
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Table 7
Simulation study 2—fractional bias of estimatd 0*

Number of binK Unaligned Major—minor alignment Minor—major alignment Average of both
alignment estimates

5 71796+ 1.58 —2323+1.69 2487+ 155 082+ 1.59
10 35216+ 1.55 —7.50+ 1.60 453+ 154 —1.49+ 1.56
50 7261+ 1.68 276+ 1.68 315+ 1.67 295+ 1.68
100 3404+ 191 —0.69+1.92 —0.65+191 —-0.67+191
150 2530+ 2.33 198+ 2.34 205+ 2.33 202+ 234
200 1443+ 3.32 —2.62+3.32 —2.70+3.32 —2.66+3.32

Exponential count rate based on E84).

Table 8
Simulation study 2

Number of binK Unaligned Major—-minor alignment Minor—major alignment Average of both
alignment estimates
5 223.92 239.45 (240.06) 219.51 (220.10) 225.44
10 218.72 226.73 (227.40) 217.48 (218.37) 220.43
50 236.95 238.05 (237.42) 236.35 (235.58) 236.88
100 270.51 271.46 (272.47) 270.25 (271.41) 270.68
150 330.16 330.97 (333.10) 330.01 (332.24) 330.35
200 469.48 469.88 (470.49) 469.19 (469.58) 469.38
Exponential count rate based on E84). Fractional standard deviation of estimat&0*. Mean predicted value in parentheses.
Table 9 K
i i ~2 N=1¢ 2 2
Simulation study 2 52 = VAR(?) + Usysz w?, (37)
Number of binK Meanxf Rejection rate k=2
5 29592+ 0.0169 0.0459 . B . .
10 7.9692-+ 0.0280 0.0489 wherewy = 7i(k)/3__, i(j) andVAR(7) is given by Eq(13)
50 479222+ 0.0697 0.0494 or (18)
100 977559+ 0.0993 0.0487 The validity of our suggested method is a subject for fur-
150 1480495+ 0.1238 0.0538 ther research. There may be some subtle degree-of-freedom
200 1980556+ 0.1463 0.0602

issues related to correlation induced by interpolation as well
as the usual low count concerns (when the chi-square distri-
bution assumption breaks down). Systematic errors that do
not vary from cycle to cycle, e.g., mass bias effects, would

not be quantified by our suggested approach.

Exponential count rate based on E84). The hypothesis test has nominal
size of 0.05. The 1-sigma sampling error for a rejection rate of 0.05 is 0.0015
since the number of trials is 20 000.

K ~ ~ .
(F(k) — 7)? 8.2. Extra random variation
Kolosyd =) ARG - 02" (36)
P (#(K)) + 0&ys

Inthis work, we have assumed that the observed count data

for any cycle is a realization of a Poisson process. Hence,
We estimatesysby requiring tha?(osys) equalsits expected  the mean and variance of the observed count data are as-
value under the null hypothesis that all variation is due t0 sumed to be the same. If the variance of the measured count
Poisson counting statistics and the isotopic ratio is the samegdata is larger than the expected value, we expect that our
for all cycles. Assuming that correlation effects due to inter- formulas for the variance of isotopic ratio estimates (Egs.
polation are insignificant, for high count data sets where  (13), (18) and (28)will underestimate the actual variances.
is large enough, this expected value is approximakety 2. Failing to account for extra random variability may system-
For low count data sets where this approximation is not valid, atically inflate the value of the goodness-of-fit statistic com-
a bootstrap resampling scheme similar to ong@Jmightbe  puted in Eq(26), even if the isotopic ratio is constant over all
a better approach to determine the expected value of the testycles.
statistic under the null hypothesis. Another strategy for deter-  |n principle, one could do experiments to check the equiv-
mining osys would be to require thaf 5, f(x)dr equals  alence of the mean and variance of observed count data for
0.5, wheref(x) is the pdf for a chi-squared distribution with a sample where we knew the isotopic ratio was stable in
K — 2 degrees of freedom. A natural approximation for the time. Given this extra information, perhaps we could mod-
variance of the estimatedue to both random variation and  ify our variance approximations (Egd.4), (16), (18), (24),
the additional systematic cycle to cycle variation estimated (25), (28), (29), (30) and our goodness-of-fit statistic (Eq.
here is52 where (26)). Alternatively, we could estimatesys using Eq.(36)
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but interprebgysdifferently. In this alternative interpretation, analysis approachl3]. In such an approach, the contin-

osys Would quantify the effect of unaccounted extra random uously varying count rate might be modeled as a regres-

variability in the data on our estimate pfaccording to Eq. sion spline. Selecting the appropriate form and complex-

(37). The validity of this approach is a subject for further ity of the regression spline would be a research project. In

study. this work, we focused on the case where the total number
of observed minor counts was greater than 0. Our meth-
ods are not intended for the cases where the total number

9. Summary of minor counts is 0. The 0 count case is a topic for further
study.

In this work, we corrected SIMS measurements of iso-

topic counts for drift by aligning the isotopic time series

using two linear interpolation schemes. In one scheme, the Acknowledgement

major isotope time series is aligned with respect to the mi-

nor isotope time series. In the other scheme, the minor iso-  We thank J. Splett of NIST for assistance with the prepa-

tope time series is aligned with respect to the major iso- ration of this manuscript and helpful comments.

tope time series. We averaged the isotopic ratio estimates

from both interpolation schemes. Our analytical formulas

(Egs.(13) and (18) closely predicted the standard devia- appendix A. Propagation-of-error method

tion of the isotopic ratio due to Poisson counting statistics

variation computed in Monte Carlo simulation experiments.  gyppose thax andy are independent random variables

Since, on average, both Eqd.3) and (18)predict nearly  ith expected valueg, and s, and variances? and o2,
the same standard deviation of the mean estimate, we sugpefine the ratio- = 1/ 14y and ratio estimate

gest that the user of our method report the larger of the
two. A x
We presented an approximate hypothesis test procedure td = ./ (. y) =~

) - . y
detect and quantify possible temporal variation of the mea-
s_ured isotopic ratio. For most of the cases studied_, the rejeC'Following [7], we approximatéas a Taylor series expansion
tion ra_te of our test was close to the desired nominal value.fusing its derivatives,, f, and f,,. We have
The discrepancy was largest for cases where the number o
minor counts was very low or the number of bins was very }(X’ Y) = e py) + (x —
low (Tables 6 and P For cases where the hypothesis test
(Eq. (26)) performance is inadequate, a bootstrap hypothe- + (= my) fy(ixs py) + (x — )y — py)
s?s test like that iff7] might be appropriate. We also pro- % Fuy(en 1), (A1)
vide a test data seTéble J) from a subset of the boron data
shown inFig. 2, and list computed interpolation weights and  where
interpolated count values ifables 2 and 3\e offered guid-
ance on how to quantify systematic errors that vary from
cycle to cycle for cases where one knows that the isotopic St 11y) = w,
ratio does not vary from cycle to cycle. We also suggested a ’
method to quantify additional uncertainty in our estimate of — iy
the isotopic ratio for the case where the variability in the fy(ix. iy) = —5-
count data is greater than predicted by Poisson statistics. Hy
The validity of these two approaches is a subject for further
study.

Here, we neglected dead time effects, mass bias effects 1
and background contributions. Accounting for these effects £, (., u,) = ——.
in our estimation procedure and uncertainty analysis is a sub- Ky
ject beyond the scope of this work. In this work, we pre-
sented a hypothesis test for temporal variation based on theAs noted in Sectior3, we assume thak andy are in-

K — 1 ratio estimates from the major—minor interpolation dependent and hence uncorrelated. If for some reason
scheme. It might be possible to develop a better hypoth- andy were correlated, we would add a covariance term 2
esis test based on the R({ 1) ratio estimates from both  COV(x, y) fx(tx, ity) fy (i, py) to the right hand side of Eq.
interpolation schemes. There are other possible approache$A.1).

for drift correction besides the one described here. For in-  We approximate the variance obS

stance, one might simultaneously estimate the major count __ -

rate 1,() and the isotopic ratie using a functional data  VAR() = E[f(x, ) — f(x, )% (A.2)

) f(thx, My)
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Hence Comments
VAR(P) = 02(felix. 143))? + 02(fy(thr. 1)) One could include more terms in our E(A.1) Tay-
5 5 ) lor series expansion. For instance, in a complete second
+ 0705 (fry (it 11y))° (A.3) order expansion, we would ad}iy — uy)zfyy(ux, Wy) to

o the right-hand side of Eq(A.1), where f,(ux, iy) =
Simplifying, we have that 2u/u3. However, the relative contribution due to this
A 5 ) additional term to the variance approximation feris
VAR(?) o2 o o negligible.

2()=—XZ 1+ )+ (A4) gh9

r Mx I‘Ly M)7

Appendix B. Codes

interpmajor = function(tm, m, tn, n, deltam, deltan) {
# interpolate major count time with respect to minor count time series
# assume that the minor isotope is measured first
# tm,tn are midpoints of observing intervals for minor and major isotope counts
# m,n are observed minor and major isotope counts
# deltam, deltan are length of minor and major observing intervals

K = length(m)

KK =K -1

gamman = 1:K

alphan = 1.K

betan = 1:K

nhat = 1:K

Nhatsum = 0

Msum = 0

for(k in (2:K)) {
alphan[k] = (tn[k] - tm[k])/(tn[K] - tn[k - 1])
betanlk] = (tm[k] - tn[k - 1])/(tn[k] - tn[k - 1])
nhat[k] = alphan[k] * n[k - 1] + betan[k] * n[k]
Nhatsum = Nhatsum + nhat[k]
Msum = Msum + mlK]

}

for(k in (2:KK)) {
gamman([k] = alphanlk + 1] + betan[k]

gamman[l] = alphan[2]
gamman[K] = betan[K]

rhat = (Msum/deltam)/(Nhatsum/deltan)
varMsum = Msum # variance approximation for Msum
varNhatsum = sum(gamman "*2 * n) # variance approximation for Nhatsum

terml = varMsum * (1 + varNhatsum/Nhatsum "2)
term2 = ((deltam * rhat)/deltan) A2 * varNhatsum
term3 = (deltan/(deltam * Nhatsum)) A2

unc2 = (terml + term2) * term3
unc = sqrt(unc2) # random 1-sigma uncertainty estimate

out = 1:2

out[1] = rhat # isotopic ratio estimate

out[2] = unc # 1-sigma random uncertainty estimate
out # return isotopic ratio and associated uncertainty
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interpminor =
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function(tm, m, tn, n, deltam, deltan) {

# interpolate minor count time series with respect to major count time series

K = length(m)
KK =K -1
alpham = 1:K
betam = 1:K
mhat = 1:K
gammam = 1:K
Mhatsum = 0
Nsum = 0

for(k in (1:KK))

{

alpham[k] = (tm[k + 1] - tn[k])/(tm[k + 1] - tm[k])
betam[k] = (tn[k] - tm[k])/(tm[k + 1] - tm[k])
mhat[k] = alpham[k] * m[k] + betam[k] * m[k + 1]

Nsum = Nsum + n[K]
Mhatsum = Mhatsum + mhat[k]
}
for(k in (2:KK)) {
gammam[k] = alpham[k] + betam[k - 1]
}
gammam[1l] = alpham[1]
gammam[K] = betam[K - 1]
varNsum = Nsum
varMhatsum = sum(gammam”2 * m)
rhat = (Mhatsum/deltam)/(Nsum/deltan)
terml = varMhatsum * (1 + varNsum/Nsum "2)
term2 = ((deltam * rhat)/deltan) A2 * varNsum
term3 = (deltan/(deltam * Nsum)) "2
unc2 = (terml + term2) * term3
unc = sqrt(unc2)
out = 1:2
out[1] = rhat # isotopic ratio estimate
out[2] = unc # 1-sigma random uncertainty estimate
out # return isotopic ratio and associated uncertainty
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temporaltest = function(tm, m, tn, n, deltam, deltan) {
# test of hypothesis that the true isotopic ratio does not vary in time

K = length(m)

KK =K-1

gamman = 1:K

alphan = 1K

betan = 1:K

nhat = 1:K

gof = 0

Nhatsum = 0

Msum = 0

for(k in (2:K)) {
alphan[k] = (tn[k] - tm[k])/(tn[K] - tn[k - 1])
betanlk] = (tm[k] - tn[k - 1])/(tn[k] - tn[k - 1])
nhat[k] = alphan[k] * n[k - 1] + betan[k] * n[k]
Nhatsum = Nhatsum + nhat[k]
Msum = Msum + mlK]

}

for(k in (2:KK)) {
gamman[k] = alphanlk + 1] + betan[k]

¥

gamman[1l] = alphan[2]
gamman([K] = betan[K]
rhat = (Msum/deltam)/(Nhatsum/deltan) # isotopic ratio estimate
# computed from pooled data

for(k in (2:K)) {

est = (m[K]/deltam)/(nhat[k]/deltan) # get estimates of r

# for each cycle
varnk = alphan[k] A2 * nlk - 1] + betan[k] A2 * nlK]

varmk = ((deltam * rhat)/deltan) * nhat[k]
terml = varmk * (1 + varnk/nhat[k] "2)
term2 = ((rhat * deltam)/deltan) A2 * varnk
term3 = (deltan/(deltam * nhat[Kk])) "2
varest = (terml + term2) * term3
gof = gof + (est - rhat) ~2/varest
}
df = K - 2 # compute approximate degrees of freedom for gof
pval = 1 - pchisq(gof, df) # compute approximate p-value
out = 1:2
out[1] = gof
out[2] = pval

out # return goodness-of-fit statistic and p-value

119
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